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Abstract. We apply a microcanonical algorithm developed recently to the Monte-Carlo 
simulation of pure SU(3) gauge theory on a 64 space-time lattice. The results are compared 
with the standard Monte-Carlo simulation method. 

In a recent paper by one of the authors (Creutz 1983), a microcanonical Monte-Carlo 
simulation method for carrying out gauge field calculations on the lattice was introduced 
and applied to the SU(2) gauge group. However, the gauge group for quantum 
chromodynamics (QCD) is SU(3). It therefore seems reasonable to apply this new technique 
to SU(3). The microcanonical algorithm is applied to SU(3) using both systematic and 
random sweeps through a 64 lattice. The results are compared with results obtained using 
the standard method of Metropolis et a1 (1953). 

We worked with a hypercubical lattice in four space-time dimensions. We joined 
nearest-neighbour lattice sites, which are denoted by i andj,  by a link {i, j }  on which sits an 
N x N unitary-unimodular matrix U, E SU(N) with 

U,.  =(U,.)-’ 

z = c  1 d(S(C)+E,  - E )  

?r I t  

We define our partition function as 

ED 

where S(C) is the action for any configuration C of our gauge fields, ED is the demon’s 
energy and E is an initially determined total energy. The inverse coupling constant squared 
/3 is determined by 

p=(E,)-’ .  

Periodic boundary conditions were used throughout our calculations. The microcanonical 
algorithm proceeds through the demon trying to update a link variable by sampling from a 
randomly generated table of S U ( N  matrices, where the change would be accepted 
providing the demon has sufficient energy. The convergence of the procedure can be 
accelerated by the traditional method of making N 2  hits per link before moving to the next 
link. There are two methods of achieving an iteration or sweep through the lattice: first, the 
traditional sequential sweep and second, the random sweep, In all cases, our initial 
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configuration was an ordered starting lattice and the demon possessed an enormous 
amount of energy. A more detailed description of our calculational technique can be found 
in Creutz and Moriarty (1983). 

In figure 1 we show the results of our simulations for pure SU(3) gauge theory on a 64 
lattice. The evolution of the inverse coupling constant squared p as a function of the 
iterations through the lattice is shown for a sequential and for a random sweep through the 
lattice in figures l(a) and (b), respectively. Averaging over the last 60 iterations gives a 
value for /3 of 5.9671. The amount of energy in the demon's sack gives a final average 
action per plaquette of 

( E )  =( 1 -;Re Tr Up) =0.4260 

where Up is the parallel transporter around a plaquette. In figure l(c) we show the 
evolution of the average action per plaquette using the conventional method of Metropolis 
et a1 (1953) at p= 5 . 8  (Creutz and Moriarty 1982). All the initial conditions were the same 
as in figures l(a) and (b). We can see that microcanonical algorithm with a random sweep 
through the lattice in figure l(b) converges quickest. In figure 2 we show the distribution of 
the demon energies over the last ten sweeps of figure l(a) after 150 iterations through the 
lattice. As expected, the distribution is exponential, 

exp ( -PE, >, 

€0 

Figure 2. The number of times out of 51 840 steps that the demon is in the corresponding 
energy bin of width 0.1 as a function of the demon energy ED. 
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Figure 3. The evolution of the 2 x 2 and 3 x 3 Wilson loops corresponding to the three runs 
presented in figure 1. 
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with /3 as given above. Figure 3 shows the convergence of the 2 x 2 and 3 x 3 Wilson loops 
(Wilson 1974) for the runs shown in figure 1. 

We conclude from figures 1 and 3 that the randomly hopping demon substantially 
reduces the initial relaxation time to equilibrium. This may be due to the good starting 
lattice created after the demon uniformly distributes his initial energy. After coming to 
equilibrium, this algorithm is essentially equivalent to the conventional approach because 
before visiting any site the demon energy becomes exponentially distributed in its 
wanderings through distant parts of the lattice. As most of the computation with SU(3) is 
spent multiplying neighbours, the computer time per link update in all these simulations is 
nearly the same. 
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